Concept#
Definition#
(Geometric Distribution)
Let \(X\) be a Geometric random variable. Then the probability mass function (PMF) of \(X\) is given by
\[
\P \lsq X = k \rsq = (1-p)^{k-1} p \qquad \text{for } k = 1, 2, \ldots
\]
where \(0 \leq p \leq 1\) is called the geometric parameter.
We write
\[
X \sim \geometric(p)
\]
to say that \(X\) is drawn from a geometric distribution with parameter \(p\).
Properties#
(Expectation of Geometric Distribution)
Let \(X \sim \geometric(p)\) be a Geometric random variable with parameter \(p\). Then the expectation of \(X\) is given by
\[
\expectation \lsq X \rsq = \sum_{k=1}^{\infty} k \cdot \P \lsq X = k \rsq = \frac{1}{p}
\]
(Variance of Geometric Distribution)
Let \(X \sim \geometric(p)\) be a Geometric random variable with parameter \(p\). Then the variance of \(X\) is given by
\[
\var \lsq X \rsq = \expectation \lsq X^2 \rsq - \expectation \lsq X \rsq^2 = \frac{1-p}{p^2}
\]
Further Readings#
Chan, Stanley H. “Chapter 3.5.3. Geometric random variable.” In Introduction to Probability for Data Science, 149-152. Ann Arbor, Michigan: Michigan Publishing Services, 2021.