Eigendecomposition and Covariance Matrix

Eigendecomposition and Covariance Matrix#

Definition 159 (Eigenvalue and Eigenvector)

Assume that

\[ \lambda \in \mathbb{F} . \]

Let \(V \in \mathbb{R}^{D}\) be a vector space over a field \(\mathbb{F}\). Let

\[ T: V \rightarrow V \]

be a linear operator. A nonzero vector \(\mathbf{v}\) in \(V\) is called an eigenvector of \(T\) corresponding to the eigenvalue \(\lambda \in \mathbb{F}\) of \(T\) if:

\[ T(\mathbf{v}) \in \operatorname{span}\{\mathbf{v}\} \Rightarrow T(\mathbf{v})=\lambda \mathbf{v} \]

In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that only changes by an overall scale when that linear transformation is applied to it. More formally, if \(T\) is a linear transformation from a vector space \(V\) over a field \(\mathbb{F}\) into itself and \(\mathbf{v}\) is a vector in \(V\) that is not the zero vector, then \(\mathbf{v}\) is an eigenvector of \(T\) if \(T(\mathbf{v})\) is a scalar multiple of \(\mathbf{v}\).

In matrix form, for an \(D \times D\) matrix \(\boldsymbol{A}\) in \(M_D(\mathbb{F})\), a nonzero column vector \(\mathbf{v}\) in \(F_c^D\) is called an eigenvector of \(\boldsymbol{A}\) corresponding to the eigenvalue \(\lambda \in \mathbb{F}\) of \(\boldsymbol{A}\) if:

\[ \boldsymbol{A} \mathbf{v}=\lambda \mathbf{v} \]

Theorem 53 (Equivalent Conditions for \(\lambda\) to be an Eigenvalue)

There are a number of equivalent conditions for \(\lambda\) to be an eigenvalue:

  • There exists \(\boldsymbol{u} \neq 0\) such that \(\boldsymbol{A} \boldsymbol{u}=\lambda \boldsymbol{u}\);

  • There exists \(\boldsymbol{u} \neq 0\) such that \((\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{u}=\mathbf{0}\)

  • \((\boldsymbol{A}-\lambda \boldsymbol{I})\) is not invertible;

  • \(\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0\).

Theorem 54 (Eigenvalues of a Symmetric Matrix)

If \(\boldsymbol{A}\) is symmetric, then all the eigenvalues are real.

Note in the context of probability theory, the covariance matrix is always symmetric!

Definition 160 (Matrix Representation of a Eigenvalue and Eigenvector)

Given a matrix \(\boldsymbol{A} \in \mathbb{R}^{D \times D}\), let \(\boldsymbol{u} \in \mathbb{R}^{D}\) be an eigenvector of \(\boldsymbol{A}\) corresponding to the eigenvalue \(\lambda \in \mathbb{R}\).

If we construct a matrix \(\boldsymbol{U} \in \mathbb{R}^{D \times D}\) whose columns are the eigenvectors of \(\boldsymbol{A}\), then \(\boldsymbol{U}^T \boldsymbol{A} \boldsymbol{U}=\boldsymbol{\Lambda}\), and a matrix \(\boldsymbol{\Lambda} \in \mathbb{R}^{D \times D}\) whose diagonal elements are the eigenvalues of \(\boldsymbol{A}\).

Then we can write

\[\begin{split} \underbrace{\begin{bmatrix} \boldsymbol{a}_1 & \cdots & \boldsymbol{a}_D \end{bmatrix}}_{\boldsymbol{A}} \underbrace{\begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_D \end{bmatrix}}_{\boldsymbol{U}} = \underbrace{\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_D \end{bmatrix}}_{\boldsymbol{\Lambda}} \underbrace{\begin{bmatrix} \boldsymbol{u}_1 & \cdots & \boldsymbol{u}_D \end{bmatrix}}_{\boldsymbol{U}} \end{split}\]

Note by the equivalent definitions of eigenvalues and eigenvectors, we see that if all the eigenvalues are distinct, then the matrix \(\boldsymbol{U}\) is invertible.

So,

\[ \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{-1} \]

Definition 161 (Characteristic Polynomial)

Let \(\boldsymbol{A} \in \mathbb{R}^{D \times D}\) be a square matrix. The characteristic polynomial of \(\boldsymbol{A}\) is defined as:

\[ \operatorname{char}(\boldsymbol{A})=\det(\boldsymbol{A}-\lambda \boldsymbol{I}) \]

where \(\boldsymbol{I}\) is the identity matrix. The eigenvalues of \(\boldsymbol{A}\) are the roots of the characteristic polynomial.

Theorem 55 (Eigenvalues are roots of the characteristic polynomial)

Let \(\boldsymbol{A} \in \mathbb{R}^{D \times D}\) be a square matrix. The eigenvalues of \(\boldsymbol{A}\) are the roots of the characteristic polynomial.

In other words, let the characteristic polynomial of \(\boldsymbol{A}\) be:

\[ f(\lambda)=\det(\boldsymbol{A}-\lambda \boldsymbol{I}) \]

Then \(f(\lambda)=0\) has \(D\) roots, which are the eigenvalues of \(\boldsymbol{A}\).

Note, however, the eigenvalues are not necessarily distinct, and therefore the roots of the characteristic polynomial are not necessarily distinct.

Definition 162 (Diagonalizable Matrix)

  1. Let \(V\) be an \(D\)-dimensional vector space over a field \(\mathbb{F}\). A linear operator

    \[ \begin{equation*} T : V \rightarrow V \end{equation*} \]

    is diagonalizable if the representation matrix \([T]_B\) relative to some basis \(B\) of \(V\) is a diagonal matrix in \(M_D(\mathbb{F})\).

  2. A square matrix \(\boldsymbol{A} \in \mathbb{F}^{D \times D}\) is diagonalizable if \(\boldsymbol{A}\) is similar to a diagonal matrix in \(\mathbb{F}^{D \times D}\).

Definition 163 (Eigendecomposition)

If \(\boldsymbol{A} \in \mathbb{R}^{D \times D}\) is symmetric, then there exists a diagonal matrix \(\boldsymbol{\Lambda} \in \mathbb{R}^{D \times D}\) whose diagonal elements are the eigenvalues of \(\boldsymbol{A}\), and there exists \(\boldsymbol{U} \in \mathbb{R}^{D \times D}\) such that \(\boldsymbol{U}^T \boldsymbol{U}=\boldsymbol{I}\) and \(\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^T\).

Recall that

\[ \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{-1} \]

and since \(\boldsymbol{U}^T \boldsymbol{U}=\boldsymbol{I}\), we have \(\boldsymbol{U}^{-1}=\boldsymbol{U}^T\).

\[ \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^T \]

All the goodies is because of the assumption that \(\boldsymbol{A}\) is symmetric.

Since now \(\boldsymbol{U}\) is orthogonal, we can replace the symbol to \(\boldsymbol{Q}\) to indicate that \(\boldsymbol{Q}\) is an orthogonal matrix.

\[ \boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T \]
\[\begin{split} \underbrace{\begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_D \end{bmatrix}}_{\boldsymbol{A}} = \underbrace{\begin{bmatrix} \boldsymbol{q}_1 & \boldsymbol{q}_2 & \cdots & \boldsymbol{q}_D \end{bmatrix}}_{\boldsymbol{Q}} \underbrace{\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_D \end{bmatrix}}_{\boldsymbol{\Lambda}} \underbrace{\begin{bmatrix} \boldsymbol{q}_1^T \\ \boldsymbol{q}_2^T \\ \vdots \\ \boldsymbol{q}_D^T \end{bmatrix}}_{\boldsymbol{Q}^T} \end{split}\]

Theorem 56 (Orthornormal Basis)

Given a set of vectors \(\{\boldsymbol{q}_1, \boldsymbol{q}_2, \cdots, \boldsymbol{q}_D\}\), if \(\boldsymbol{q}_i^T \boldsymbol{q}_j=0\) for \(i \neq j\), and \(\boldsymbol{q}_i^T \boldsymbol{q}_i=1\) for \(i=1,2,\cdots,D\), then \(\{\boldsymbol{q}_1, \boldsymbol{q}_2, \cdots, \boldsymbol{q}_D\}\) is an orthornormal basis.

In other words, \(\{\boldsymbol{q}_d\}_{d=1}^D\) is orthonormal means it is a basis of any vector \(\boldsymbol{x} \in \mathbb{R}^D\)

\[ \boldsymbol{x} = \sum_{d=1}^D \alpha_d \boldsymbol{q}_d \]

where \(\alpha_d\) is the basis coefficient of \(\boldsymbol{q}_d\).